
d01 – Quadrature d01bac

nag 1d quad gauss (d01bac)

1. Purpose

nag 1d quad gauss (d01bac) computes an estimate of the definite integral of a function of known
analytical form, using a Gaussian quadrature formula with a specified number of abscissae.
Formulae are provided for a finite interval (Gauss-Legendre), a semi-infinite interval (Gauss-
Laguerre, Gauss-Rational), and an infinite interval (Gauss-Hermite).

2. Specification

#include <nag.h>
#include <nagd01.h>

double nag_1d_quad_gauss(Nag_GaussFormulae quadrule, double (*f)(double x),
double a, double b, Integer npts, NagError *fail)

3. Description

3.1. General

This function evaluates an estimate of the definite integral of a function f(x), over a finite or infinite
interval, by n-point Gaussian quadrature (see Davis and Rabinowitz (1967), Froberg (1965), Ralston
(1965) or Stroud and Secrest (1966)). The integral is approximated by a summation

n∑
i=1

ωif(xi)

where ωi are called the weights, and the xi the abscissae. A selection of values of n is available.
(See Section 4.)

3.2. Both Limits Finite

∫ b

a

f(x) dx

The Gauss-Legendre weights and abscissae are used, and the formula is exact for any function of
the form:

f(x) =
2n−1∑
i=0

cix
i

The formula is appropriate for functions which can be well approximated by such a polynomial
over [a, b]. It is inappropriate for functions with algebraic singularities at one or both ends of the
interval, such as 1√

(1+x)
on [−1, 1].

3.3. One Limit Infinite

∫ ∞

a

f(x) dx or
∫ a

−∞
f(x) dx.

Two quadrature formulae are available for these integrals.

(a) The Gauss-Laguerre formula is exact for any function of the form:

f(x) = e−bx
2n−1∑
i=0

cix
i

This formula is appropriate for functions decaying exponentially at infinity; the parameter b
should be chosen if possible to match the decay rate of the function.

[NP3275/5/pdf] 3.d01bac.1

nag 1d quad gauss NAG C Library Manual

(b) The Gauss-Rational formula is exact for any function of the form:

f(x) =
2n+1∑
i=2

ci

(x + b)i
=

2n−1∑
i=0

c2n+1−i(x + b)i

(x + b)2n+1

This formula is likely to be more accurate for functions having only an inverse power rate of
decay for large x. Here the choice of a suitable value of b may be more difficult; unfortunately
a poor choice of b can make a large difference to the accuracy of the computed integral.

3.4. Both Limits Infinite

∫ +∞

−∞
f(x) dx.

The Gauss-Hermite weights and abscissae are used, and the formula is exact for any function of
the form:

f(x) = e−b(x−a)2
2n−1∑
i=0

cix
i.

Again, for general functions not of this exact form, the parameter b should be chosen to match if
possible the decay rate at ±∞.

4. Parameters

quadrule
Members of this enum type indicate the quadrature formula:
Nag Legendre, for Gauss-Legendre quadrature on a finite interval;
Nag Rational, for Gauss-Rational quadrature on a semi-infinite interval;
Nag Laguerre, for Gauss-Laguerre quadrature on a semi-infinite interval;
Nag Hermite, for Gauss-Hermite quadrature on an infinite interval.

f
The function f, supplied by the user, must return the value of the integrand f at a given
point.
The specification of f is:

double f(double x)

x
Input: the point at which the integrand f must be evaluated.

Some points to bear in mind when coding f are mentioned in Section 6.

a
b

Input: the parameters a and b which occur in the integration formulae:

Gauss-Legendre:
a is the lower limit and b is the upper limit of the integral. It is not necessary that a < b.

Gauss-Rational:
b must be chosen so as to make the integrand match as closely as possible the exact form
given in Section 3.3(b). The interval of integration is [a,∞) if a + b > 0, and (−∞, a] if
a + b < 0.

Gauss-Laguerre:
b must be chosen so as to make the integrand match as closely as possible the exact form
given in Section 3.3(a). The interval of integration is [a,∞) if b > 0, and (−∞, a] is b < 0.

Gauss-Hermite:
a and b must be chosen so as to make the integrand match as closely as possible the exact
form given in Section 3.4.

Constraints: Gauss-Rational: a + b �= 0
Gauss-Laguerre: b �= 0
Gauss-Hermite: b > 0.

3.d01bac.2 [NP3275/5/pdf]

d01 – Quadrature d01bac

npts
Input: the number of abscissae to be used, n.
Constraint: npts = 1,2,3,4,5,6,8,10,12,14,16,20,24,32,48 or 64.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

Users are recommended to declare and initialise fail and set fail.print = TRUE for this
function.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter quadrule had an illegal value.

NE QUAD GAUSS NPTS RULE
The N -point rule is not among those stored.
The answer is evaluated for 〈value〉, the largest possible value of npts less than the requested
value, 〈value〉.

NE QUAD GAUSS CONS
Gauss-Rational input is invalid with a + b = 0.
Constraint: a + b �= 0.
Gauss-Laguerre input is invalid with b = 0.
Constraint: b �= 0.
Gauss-Hermite input is invalid with b ≤ 0.
Constraint: b > 0.
The answer is returned as zero.

6. Further Comments

The time taken by the routine depends on the complexity of the expression for the integrand and
on the number of abscissae required.

6.1. Accuracy

The accuracy depends on the behaviour of the integrand, and on the number of abscissae used.
No tests are carried out in the routine to estimate the accuracy of the result. If such an estimate
is required, the routine may be called more than once, with a different number of abscissae each
time, and the answers compared. It is to be expected that for sufficiently smooth functions a larger
number of abscissae will give improved accuracy.

Alternatively, the interval of integration may be subdivided, the integral estimated separately for
each sub-interval, and the sum of these estimates compared with the estimate over the whole
interval.

The coding of the function f may also have a bearing on the accuracy. For example, if a high-order
Gauss-Laguerre formula is used, and the integrand is of the form

f(x) = e−bxg(x)

it is possible that the exponential term may underflow for some large abscissae. Depending on the
machine, this may produce an error, or simply be assumed to be zero. In any case, it would be
better to evaluate the expression as:

f(x) = exp(−bx + ln g(x)).

Another situation requiring care is exemplified by
∫ +∞

−∞
e−x2

xm dx = 0, m odd.

The integrand here assumes very large values; for example, for m = 63, the peak value exceeds
3× 1033. Now, if the machine holds floating-point numbers to an accuracy of k significant decimal

[NP3275/5/pdf] 3.d01bac.3

nag 1d quad gauss NAG C Library Manual

digits, we could not expect such terms to cancel in the summation leaving an answer of much less
than 1033−k (the weights being of order unity); that is instead of zero, we obtain a rather large
answer through rounding error. Fortunately, such situations are characterised by great variability
in the answers returned by formulae with different values of n. In general, the user should be aware
of the order of magnitude of the integrand, and should judge the answer in that light.

6.2. References

Davis P J and Rabinowitz P (1967) Numerical Integration Blaisdell Publishing Company pp. 33–52.
Froberg C E (1965) Introduction to Numerical Analysis Addison-Wesley pp. 181–187.
Ralston A (1965) A First Course in Numerical Analysis McGraw-Hill pp. 87–90.
Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice-Hall.

7. See Also

None.

8. Example

This example program evaluates the integrals
∫ 1

0

4
1 + x2

dx = π

by Gauss-Legendre quadrature;
∫ ∞

2

1
x2 lnx

dx = 0.378671

by Gauss-Rational quadrature with b = 0;
∫ ∞

2

e−x

x
dx = 0.048901

by Gauss-Laguerre quadrature with b = 1; and
∫ +∞

−∞
e−3x2−4x−1 dx =

∫ +∞

−∞
e−3(x+1)2e2x+2 dx = 1.428167

by Gauss-Hermite quadrature with a = −1 and b = 3.

The formulae with n = 4, 8, 16 are used in each case.

8.1. Program Text

/* nag_1d_quad_gauss(d01bac) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>

#ifdef NAG_PROTO
static double fun1(double x);
#else
static double fun1();
#endif

#ifdef NAG_PROTO
static double fun2(double x);
#else
static double fun2();
#endif

3.d01bac.4 [NP3275/5/pdf]

d01 – Quadrature d01bac

#ifdef NAG_PROTO
static double fun3(double x);
#else
static double fun3();
#endif

#ifdef NAG_PROTO
static double fun4(double x);
#else
static double fun4();
#endif

main()
{
static Integer nstor[3] = {4, 8, 16};

double a, b;
Integer i;
static NagError fail;
double ans;
Nag_GaussFormulae gaussformula;
Boolean success = TRUE;
fail.print = TRUE;

Vprintf("d01bac Example Program Results\n");
Vprintf("\nGauss-Legendre example\n\n");
for (i=0; i<3; ++i)

{
a = 0.0;
b = 1.0;
gaussformula = Nag_Legendre;
ans = d01bac(gaussformula, fun1, a, b, nstor[i], &fail);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_GAUSS_NPTS_RULE)
Vprintf("%ld Points Answer = %10.5f\n\n", nstor[i], ans);

else
{
Vprintf("%s\n", fail.message);
success = FALSE;

}
}

Vprintf("\nGauss-Rational example\n\n");
for (i=0; i<3; ++i)

{
a = 2.0;
b = 0.0;
gaussformula = Nag_Rational;
ans = d01bac(gaussformula, fun2, a, b, nstor[i], &fail);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_GAUSS_NPTS_RULE)
Vprintf("%ld Points Answer = %10.5f\n\n", nstor[i], ans);

else
{
Vprintf("%s\n", fail.message);
success = FALSE;

}
}

Vprintf("\nGauss-Laguerre example\n\n");
for (i=0; i<3; ++i)

{
a = 2.0;
b = 1.0;
gaussformula = Nag_Laguerre;
ans = d01bac(gaussformula, fun3, a, b, nstor[i], &fail);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_GAUSS_NPTS_RULE)
Vprintf("%ld Points Answer = %10.5f\n\n", nstor[i], ans);

else
{
Vprintf("%s\n", fail.message);
success = FALSE;

}
}

[NP3275/5/pdf] 3.d01bac.5

nag 1d quad gauss NAG C Library Manual

Vprintf("\nGauss-Hermite example\n\n");
for (i=0; i<3; ++i)

{
a = -1.0;
b = 3.0;
gaussformula = Nag_Hermite;
ans = d01bac(gaussformula, fun4, a, b, nstor[i], &fail);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_GAUSS_NPTS_RULE)
Vprintf("%ld Points Answer = %10.5f\n\n", nstor[i], ans);

else
{
Vprintf("%s\n", fail.message);
success = FALSE;

}
}

if (success)
exit(EXIT_SUCCESS);

else
exit(EXIT_FAILURE);

} /* main */

#ifdef NAG_PROTO
static double fun1(double x)
#else

static double fun1(x)
double x;

#endif
{
return 4.0/(x*x+1.0);

}

#ifdef NAG_PROTO
static double fun2(double x)
#else

static double fun2(x)
double x;

#endif
{
return 1.0/(x*x*log(x));

}

#ifdef NAG_PROTO
static double fun3(double x)
#else

static double fun3(x)
double x;

#endif
{
return exp(-x)/x;

}

#ifdef NAG_PROTO
static double fun4(double x)
#else

static double fun4(x)
double x;

#endif
{
return exp(x*(-3.0)*x-x*4.0-1.0);

}

8.2. Program Data

None.

3.d01bac.6 [NP3275/5/pdf]

d01 – Quadrature d01bac

8.3. Program Results

d01bac Example Program Results

Gauss-Legendre example

4 Points Answer = 3.14161

8 Points Answer = 3.14159

16 Points Answer = 3.14159

Gauss-Rational example

4 Points Answer = 0.37910

8 Points Answer = 0.37876

16 Points Answer = 0.37869

Gauss-Laguerre example

4 Points Answer = 0.04887

8 Points Answer = 0.04890

16 Points Answer = 0.04890

Gauss-Hermite example

4 Points Answer = 1.42803

8 Points Answer = 1.42817

16 Points Answer = 1.42817

[NP3275/5/pdf] 3.d01bac.7

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

